Opportunities for inclusive diffraction at EIC

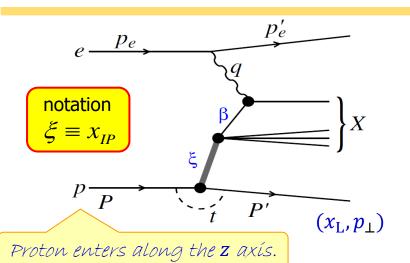
Wojtek Słomiński (Jagiellonian University)

in collaboration with Nestor Armesto, Paul Newman and Anna Stasto

- Diffractive DIS model and data simulation
- Fits and DPDFs determination vs. HERA
- $F_{\rm L}^{{\rm D}(3)}$ measurement
- $\sigma_{\rm red}^{D(4)}$ and the subleading contribution study

EIC Yellow Report, 2103.05419 Armesto, Newman, Słomiński, Staśto 1901.09076

Inclusive diffractive DIS — a résumé



$$\xi \equiv x_{IP} = \frac{(P - P') \cdot q}{P \cdot q} = \frac{Q^2 + M_X^2 - t}{Q^2 + W^2 - m_p^2}$$

$$\beta = \frac{Q^2}{2(P - P') \cdot q} = \frac{Q^2}{Q^2 + M_X^2 - t}$$

$$x = \xi \beta$$

Outgoing proton leaves the interaction region intact, and in a very forward direction. Its momentum is given in terms of (x_L, \vec{p}_\perp) with $P'_+ = x_L P_+$.

Cross section • reduced cross section • diffractive structure functions

$$\frac{d\sigma}{d\beta dQ^{2}d\xi dt} = \frac{2\pi\alpha^{2}}{\beta Q^{4}} \left[1 + (1 - y)^{2}\right] \sigma_{\text{red}}^{D(4)}(\xi, t, \beta, Q^{2})$$

$$\sigma_{\text{red}}^{D} = F_{2}^{D} - \frac{y^{2}}{1 + (1 - y)^{2}} F_{L}^{D}$$

$$\dim = \text{GeV}^{-2}$$

Upon integration over t $\sigma_{\mathrm{red}}^{D(3)}$, $F_{2,L}^{D(3)}$ become dimensionless

Two component model for diffractive SFs (as used in the HERA fits)

Regge factorization works at low ξ (< 0.01).

At higher ξ , subleading exchanges (reggeons/mesons) enter the game — they are all parametrized by a <u>single</u> additional "Reggeon" term

This works within the HERA data accuracy

$$F^{D(4)}(\xi, t, z, Q^2) = \varphi_{\mathbf{P}}(\xi, t) F^{\mathbf{P}}(z, Q^2) + \varphi_{\mathbf{R}}(\xi, t) F^{\mathbf{R}}(z, Q^2)$$

$$\varphi_{P,R}$$
 = Regge-type flux:

$$\varphi(\xi,t) = \xi^{1-2\alpha(t)}e^{Bt}$$
 with $\alpha(t) = \alpha_0 + \alpha't$

Collinear factorization:

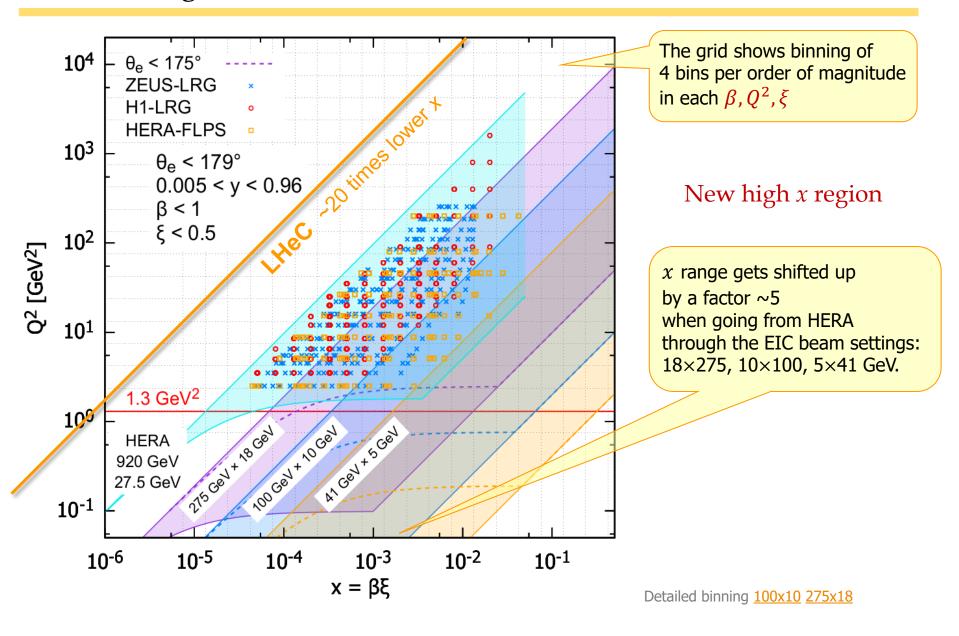
$$F_{2/L}^{\mathbf{P}}(\beta, Q^2) = \sum_{k} \int_{\beta}^{1} \frac{dz}{z} C_{2/L, k} \left(\frac{\beta}{z}\right) f_{k}^{\mathbf{P}}(z, Q^2)$$

Pomeron PDFs obtained via NLO DGLAP evolution starting at μ_0^2 = 1.8 GeV² with:

$$f_k^{\mathbf{P}}(z, \mu_0^2) = A_k z^{B_k} (1 - z)^{C_k}, \qquad k = g, q$$

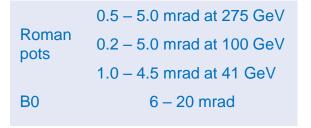
$$q = d = u = s$$

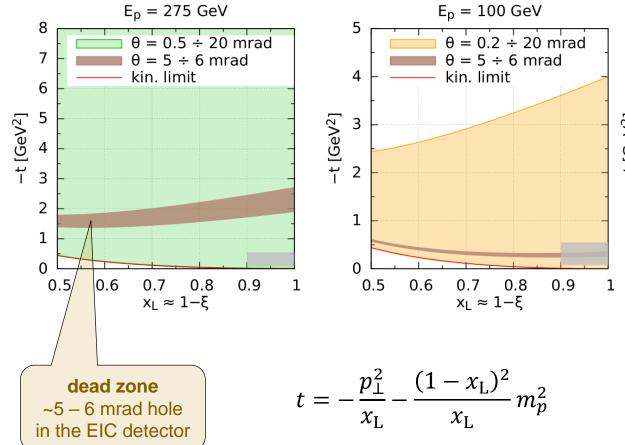
x, Q^2 range — EIC, HERA, LHeC

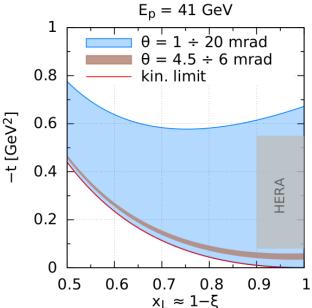


Final proton tagging $-(x_L, t)$ plane

- ➤ Very important improvement wrt. HERA
- Cleanest way to select diffractive events

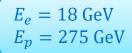


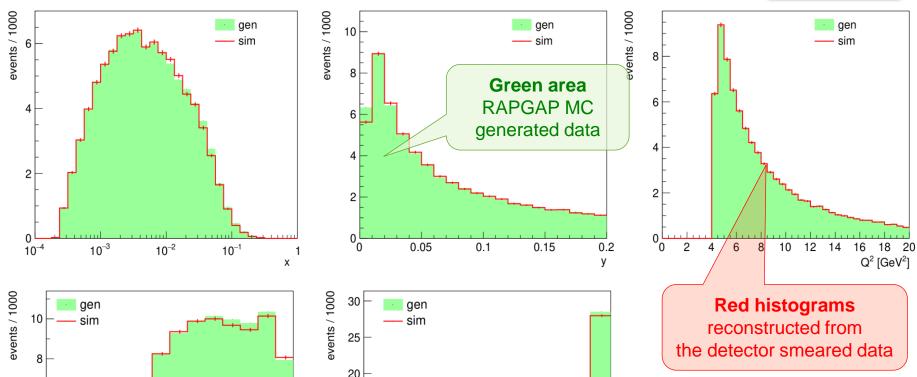




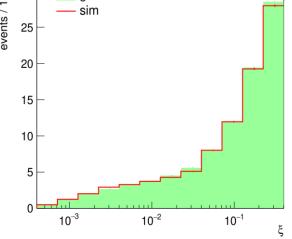
 $x_{\rm L}, p_{\perp}, \theta$ measured in LAB = collinear(e,p) frame

DDIS kinematical variables resolution (detector simulations)





gen
8
6
4
2
10⁻³ 10⁻² 10⁻¹ 1
β

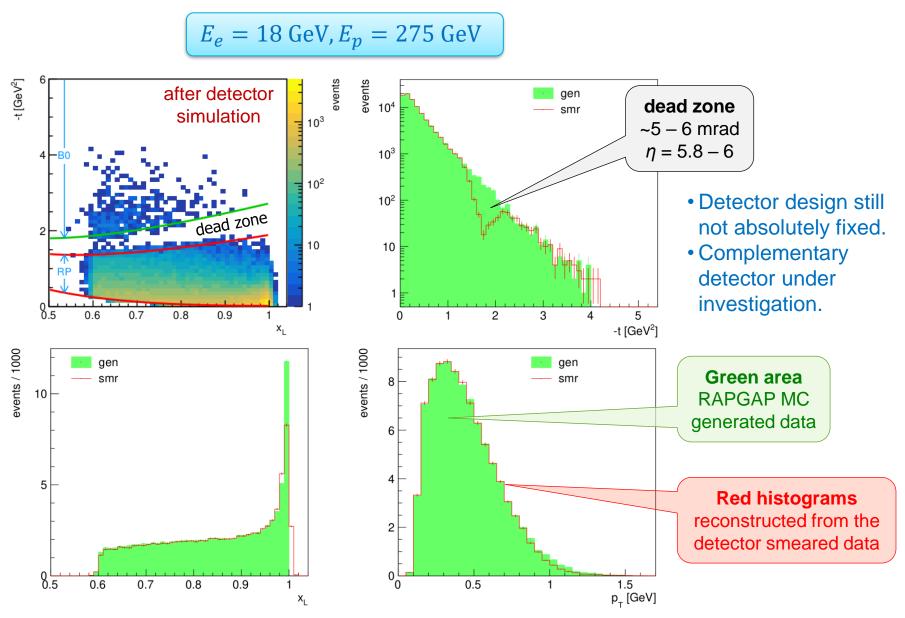


Best reconstruction achieved by taking average from several methods weighted by the resolution

Reconstruction details

Wojtek Słomiński (Jagiellonian University) - DIS2021

Resolution and acceptance for t, x_L , p_\perp



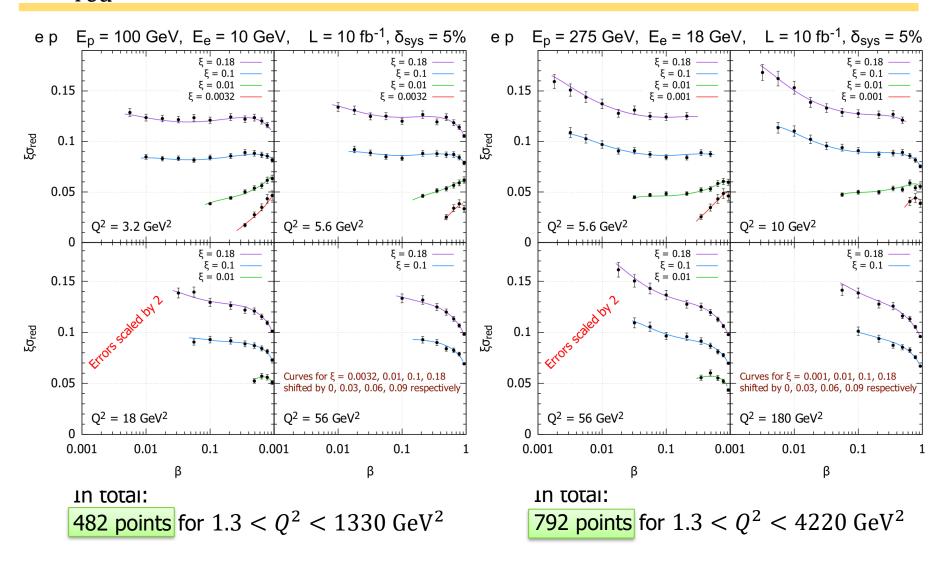
Diffractive PDFs from fits to the $\sigma_{\text{red}}^{D(3)}(\xi, \beta, Q^2)$ data

- Pseudo-data generation
 - Binning:
 - 4 bins per order of magnitude in each β , Q^2 , ξ ;
 - Very good acceptance and purity
 - Simulations:
 - Extrapolation from ZEUS-SJ DPDFs
 - Random smearing according to $\delta_{sys}=5\% \text{ and } \delta_{stat} \text{ from } 10 \text{ fb}^{-1} \text{ integrated luminosity;}$ errors are dominated by systematics
 - Several random samples generated
- DPDFs fits to $\sigma_{\rm red}^{D(3)}$
 - Out of all 13 parameters:

$$f_g^{\mathbf{P}}(z, \mu_0^2) = A_g z^{B_g} (1 - z)^{C_g}$$

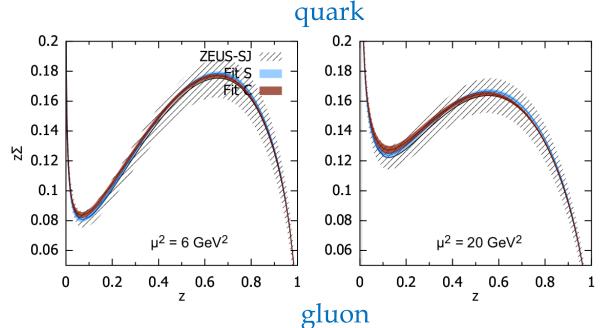
- 4, $B_{P/R}$, $\alpha'_{P/R}$ are fixed from other measurements, e.g. $\sigma_{\rm red}^{D(4)}$
- 9 remain to be fitted → Standard fit Fit S
- Option: constant gluon at μ_0^2 , i.e. $B_g = C_g \equiv 0 \rightarrow {\sf Fit C}$ with 7 parameters

$\sigma_{\rm red}^{D(3)}$ pseudo-data examples



Very precise data

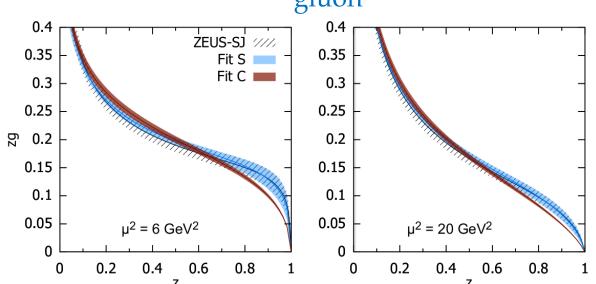
Quark and gluon DPDFs from fits to 18 GeV × 275 GeV data



Data selection

 $Q^2 > 5~{\rm GeV^2}$, $\xi < 0.1$ 375 data points

- Fit S: 9 parameters,
- Fit C: 7 parameters: $B_g = C_g \equiv 0$



As compared to HERA

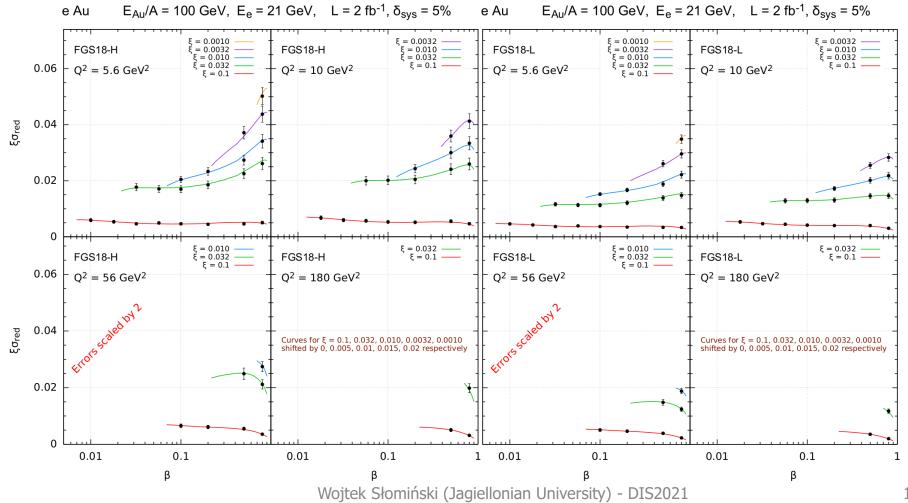
- Much smaller uncertainty for the quark DPDF at high z
- No improvement for gluon
 - Both S and C fits give $\chi^2 \approx 1$
 - Another, gluon-sensitive process needed,
 e.g. dijet production,
 dominated by BGF

Inclusive diffraction on nuclei — simulations for gold

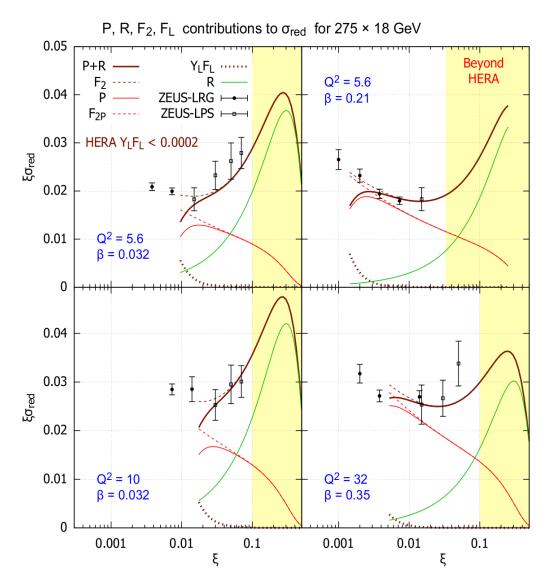
Nuclear shadowing & diffraction are related

Nuclear modification factors from the Frankfurt-Guzey-Strikman model, Phys. Rep. 512, 255 (2012) Two scenarios for high (H) and low (L) shadowing considered.

- ➤ High accuracy
- ➤ No model to fit



Extrapolation — Pomeron, Reggeon, F_2 , F_L components of $\sigma_{\rm red}^{D(3)}$



$$E_e = 18 \text{ GeV}, E_p = 275 \text{ GeV}$$

- Pomeron dominates at low ξ,
 especially at higher β
- $f \square$ "Reggeon" contribution grows with ξ
 - \Box Dominates for $\xi > 0.1$
 - □ High ξ region accessible by the final proton tagging at EIC

$$\sigma_{\rm red} = F_2 - \frac{y^2}{1 + (1 - y)^2} F_{\rm L}$$

□ Significant F_L component,
 ~30 times higher than at HERA due to higher y values

$F_{\rm L}^{{\rm D}(3)}$ investigation

□ 18 beam setups used for the simulations:

$$E_e \times E_p = \{5, 10, 18\} \times \{41, 100, 120, 165, 180, 275\}$$
 GeV

Challenging but not impossible

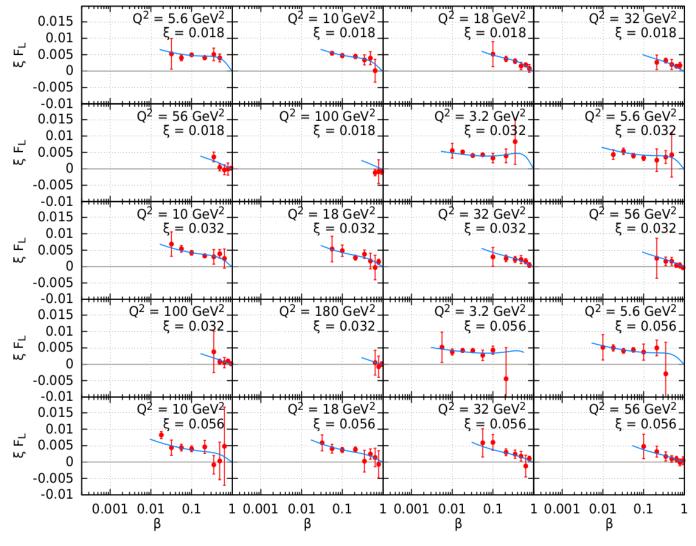
- \Box $\delta_{\rm sys} = 2\%$ and $\delta_{\rm stat}$ from 10 fb⁻¹ integrated luminosity
- \square 469 bins in (ξ, β, Q^2) selected such that
 - f contain at least four $\sigma_{
 m red}$ data points
 - \square $Q^2 > 3 \text{ GeV}^2$,
 - \square $M_X > 2$ GeV.
- \square F_2 , F_L obtained from fits to σ_{red} vs. Y_L :

$$\sigma_{\text{red}} = F_2 (\xi, \beta, Q^2) - Y_L F_L (\xi, \beta, Q^2)$$

separately in each (ξ, β, Q^2) bin

$$Y_{L} = \frac{y^{2}}{1 + (1 - y)^{2}}$$
$$y = \frac{Q^{2}}{\xi \beta s}$$

Simulated measurement of $F_L^{D(3)}$ vs. β in bins of (ξ, Q^2)



76 bins in (ξ, Q^2)

20 bins shown

F_L fit ----- F_L model ------

Error bars correspond to the 90% confidence interval.

A reliable measurement of $F_{\rm L}^{{
m D}(3)}$ within the reach of EIC

$$\sigma_{\rm red}^{D(4)}$$
 vs. (ξ, t) simulations

From the ZEUS-SJ fit

$$\xi \varphi_P(\xi,t) \propto \xi^{-0.22} e^{-7|t|}$$

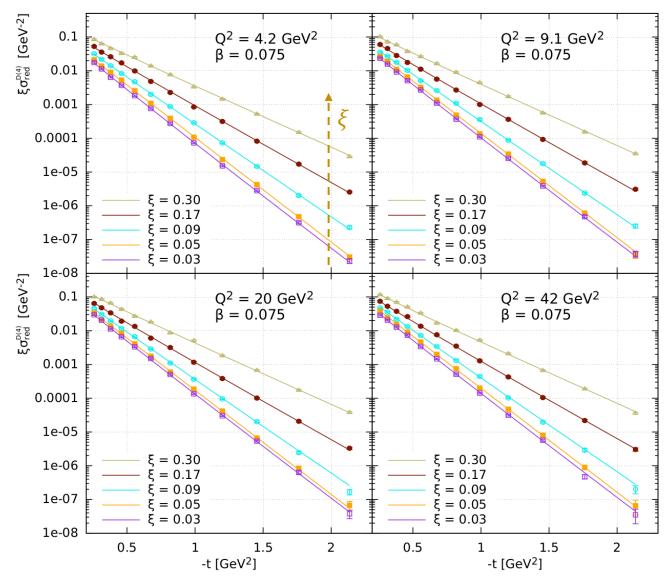
$$\xi \varphi_R(\xi,t) \propto \xi^{0.6+1.8|t|} e^{-2|t|}$$

Pomeron and "Reggeon" components have very different shapes in ξ and t

- \succ Extrapolation of $\sigma_{\rm red}^{D(4)}(\xi,t,\beta,Q^2)$ calculated using ZEUS-SJ DPDFs
- > Simulation done by random smearing according to
 - \triangleright $\delta_{\rm sys} = 5\%$
 - \triangleright $\delta_{\rm stat}$ from $L=10~{\rm fb}^{-1}$

Nb. statistical errors increase at large |t|

Simulations for $\sigma_{\text{red}}^{D(4)}$ vs. t



$$E_e = 18 \text{ GeV}$$

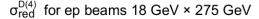
 $E_p = 275 \text{ GeV}$

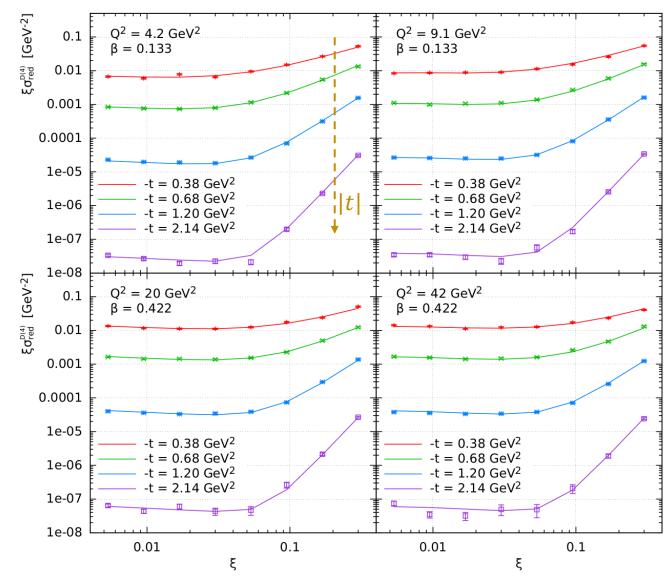
Lines — extrapolation Points — simulation

$$C_P \, \xi^{-0.22} \, e^{-7|t|} + C_R \, \xi^{0.6+1.8|t|} \, e^{-2|t|}$$

Very well measurable t-slope vs. ξ

Simulations for $\sigma_{\rm red}^{D(4)}$ vs. ξ





$$E_e = 18 \text{ GeV}$$

 $E_p = 275 \text{ GeV}$

Lines — extrapolation Points — simulation

$$C_P \xi^{-0.22} e^{-7|t|} + C_R \xi^{0.6+1.8|t|} e^{-2|t|}$$

Very well measurable dependence on ξ

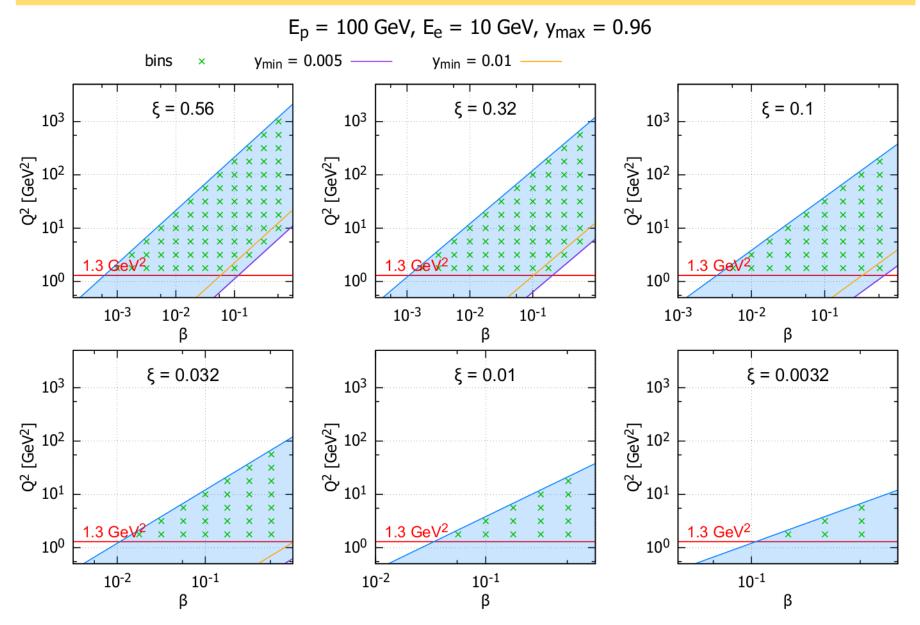
Double-slope structure?

Summary

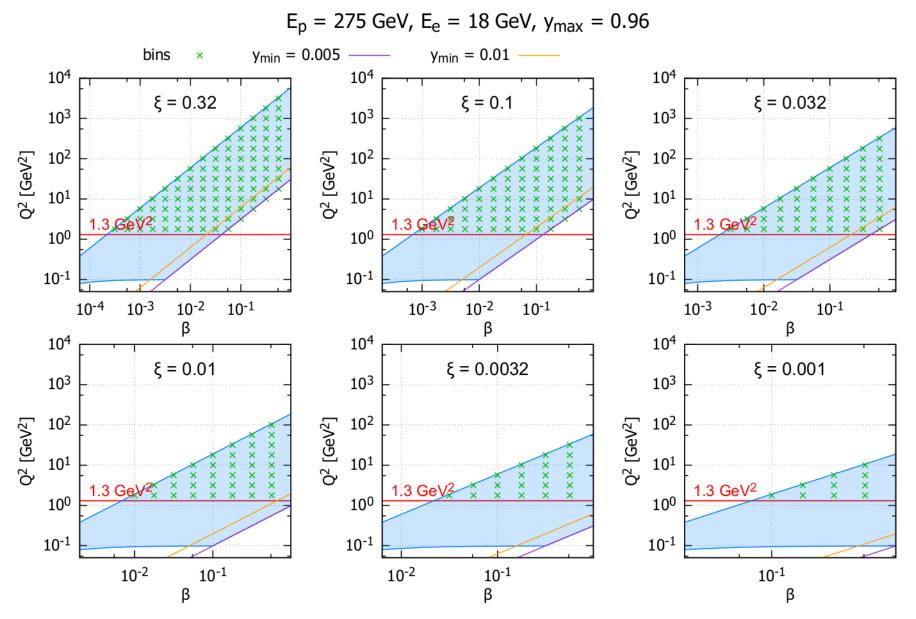
- ☐ EIC detector capabilities
 - ☐ Powerful final proton tagging
 - ☐ Very good acceptance and resolution for the diffractive DIS variables
- ☐ Prospects
 - \square Precise *e-p* and *e-A* $\sigma_{\text{red}}^{D(3)}$ measurements
 - \square Pomeron PDFs extraction high accuracy for quarks at high β
 - $\Box F_{\rm L}^{D(3)}$ determination in wide range of (ξ, β, Q^2)
 - \square Precise *e-p* $\sigma_{\text{red}}^{D(4)}$ vs. (ξ, t) measurement down to $x_L \approx 0.6$
 - ☐ Subleading "Reggeon" contribution
 - ☐ "Leading proton" region

BACKUP

Detailed binning $100 \times 10 \text{ GeV}$



Detailed binning $275 \times 18 \text{ GeV}$



Reconstruction of kinematic variables

Several methods of kinematical reconstruction are used to produce the final values as averages weighted by the experimental resolution.

- \mathbb{Q}^2 , x, y by weighted average of
 - "Electron" and "Double angle" methods
- Additionally, M_X , β , ξ by weighted average of
 - MX method:
 - $M_X = P_X^2$ (from all EFOs)

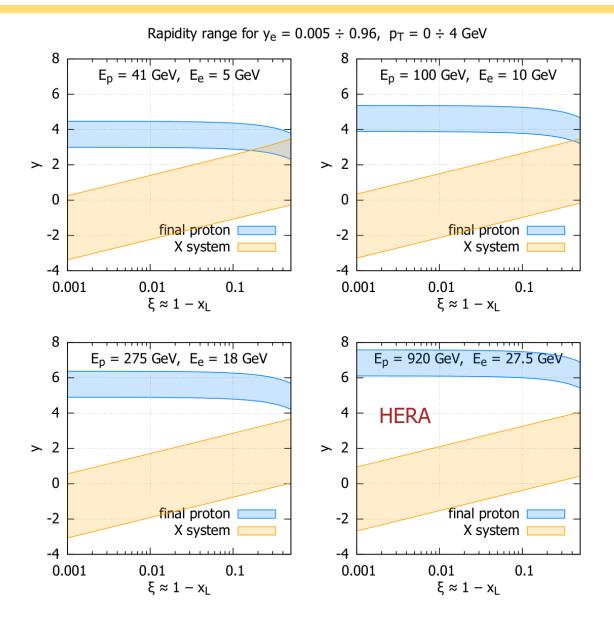
$$\beta = \frac{Q^2}{Q^2 + M_X^2 - t}, \ \xi = \frac{x}{\beta}$$

MP method:

$$\beta = \frac{Q^2}{2(P-P') \cdot q}$$

$$M_X = \frac{1-\beta}{\beta} Q^2 + t, \ \xi = \frac{x}{\beta}$$

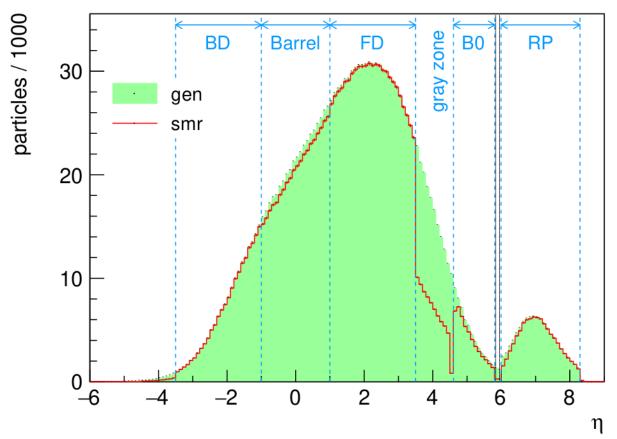
Rapidity gap



Rapidity gap

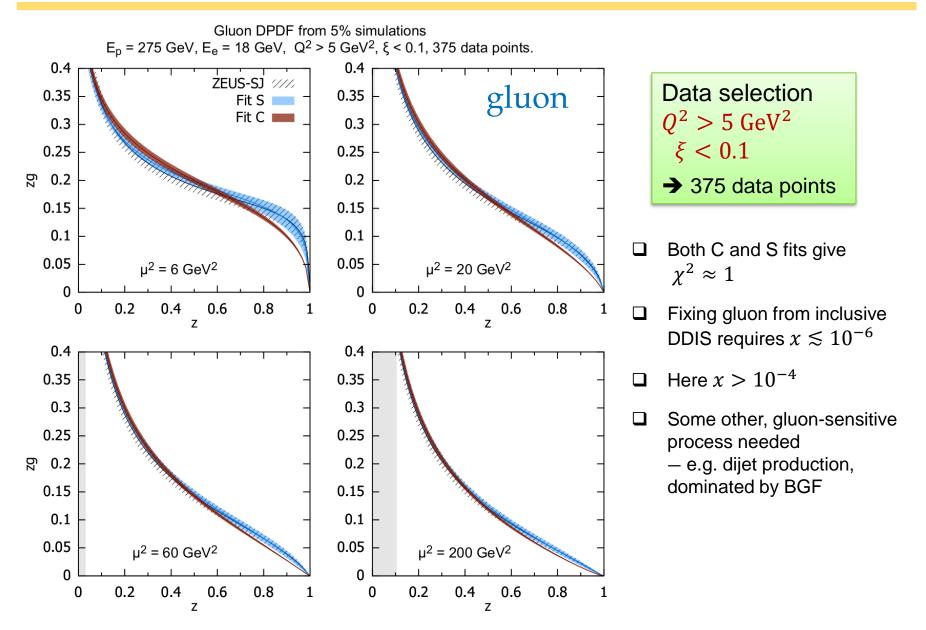
- > grows with s
- ightharpoonup shrinks $\sim \ln \frac{1}{\xi}$

Pseudo-rapidity distribution

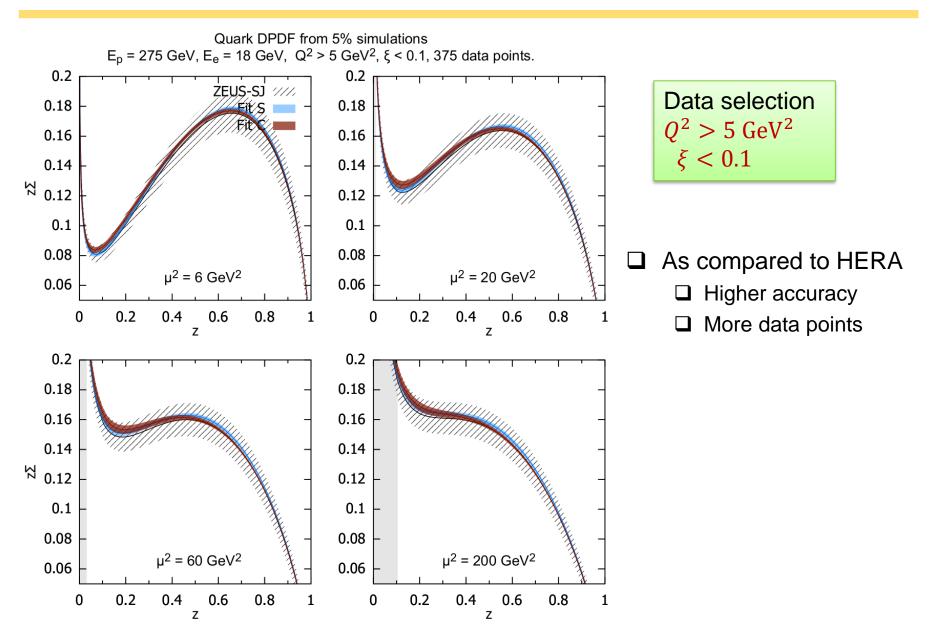


gray zone covered by EMCAL only

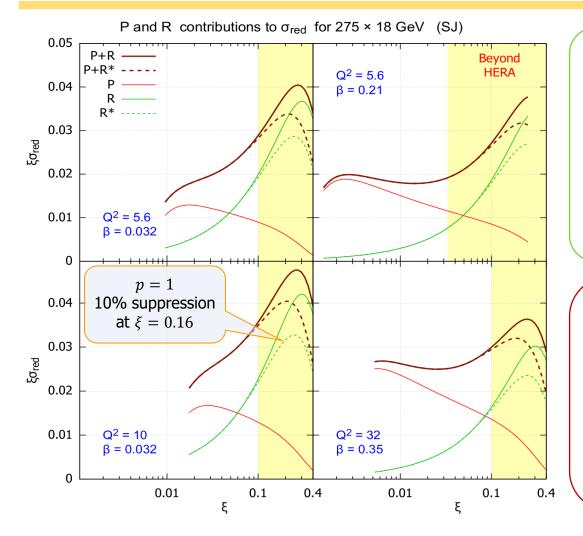
Gluon DPDFs form C and S fits



Quark DPDFs form C and S fits



Sensitivity to the Reggeon contribution to σ_{red}



Procedure

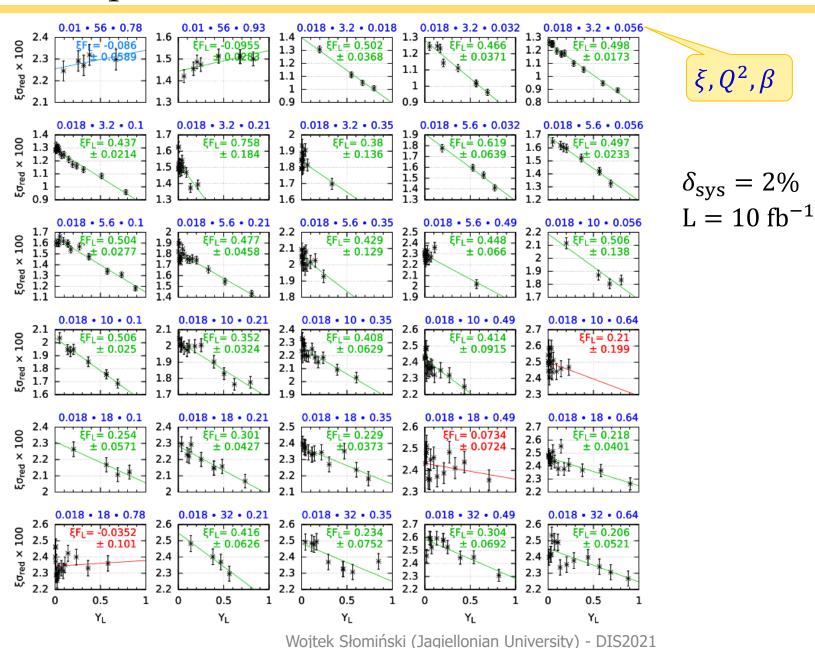
- 1. Suppress Reggeon by a factor $\mathbb{R}^* = \left(\frac{1-\xi}{1-\xi_0}\right)^p \mathbb{R}$ for $\xi > \xi_0 = 0.07$,
- 2. Generate pseudo-data with nominal and modified \mathbb{R} contributions,
- 3. Fit DPDFs, using Reggeon flux $\varphi_R \propto \xi^{1-2\alpha_R}$ with α_R free.

Results

- $\begin{tabular}{ll} \hline \square Fits to the unmodified \mathbb{R} \\ result in χ^2 ≈ 1, as expected. \\ \end{tabular}$
- Fits to \mathbb{R}^* suppressed by ~10% give $\chi^2 \approx 1.2$ This excludes a simple power-law shape in ξ .

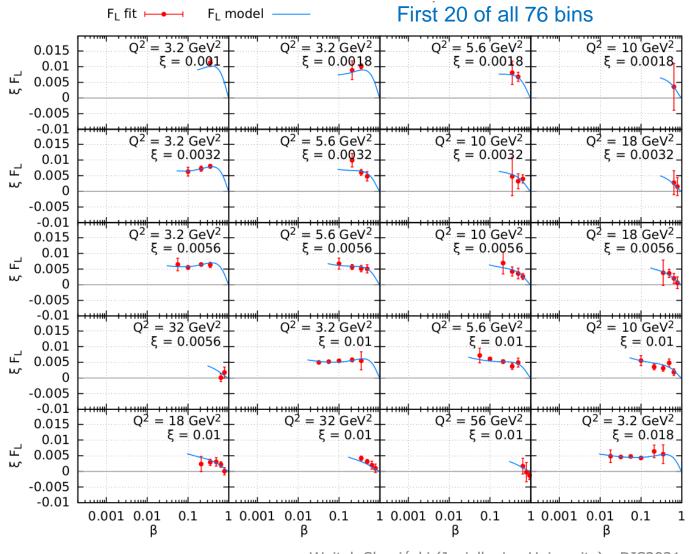
Data at $\xi > 0.3$ desired for the subleading exchange study.

Example of F_L fits



Simulated measurement of F_L vs. β in bins of (ξ, Q^2)

76 bins in (ξ, Q^2)

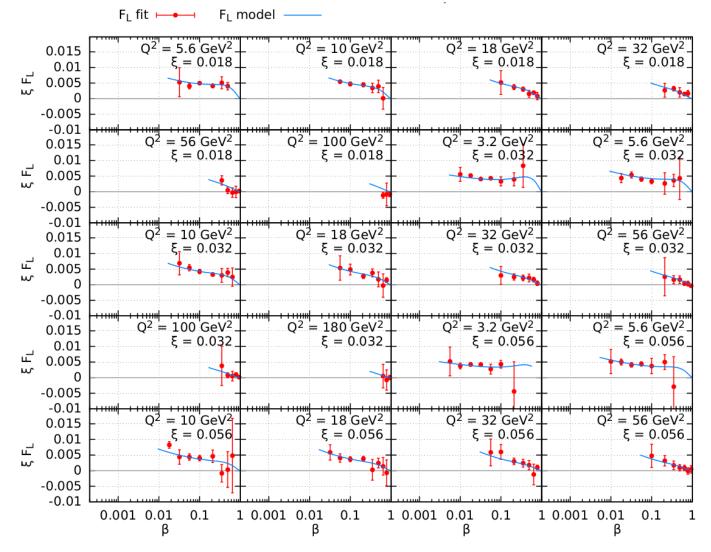


F_L fit ----- F_L model ------

Error bars correspond to the 90% confidence interval.

A reliable measurement of $F_{\rm L}^{{
m D}(3)}$ within the reach of EIC

Simulated measurement of F_L vs. β in bins of (ξ, Q^2) (cont.)



Next 20 of 76 bins in (ξ, Q^2)

F_L fit ----- F_L model ------

Error bars correspond to the 90% confidence interval.

A reliable measurement of $F_{\rm L}^{{
m D}(3)}$ within the reach of EIC